CAS: Crime Anticipation System

Predictive Policing in Amsterdam
«waakzaam en clienstbaar»»

Introduction

- Dick Willems

- Background in Mathematical Psychology (University of Nijmegen)
- Statistician at Universities of Nijmegen and Maastricht
- Datamining consultant for commercial businesses
- Joined Amsterdam Police Department in 2012

Agenda

- Police Datamining in Amsterdam
- Predictive policing: Crime Anticipation System
- Origin
- Method
- Future

Police Datamining in Amsterdam

- The Netherlands are divided into 10 regional units, of which Amsterdam is one.
- The Dutch Police puts great effort into reducing High Impact Crimes (domestic burglary, mugging and robbery)
- Some numbers concerning High Impact Crimes in Amsterdam:
- Domestic burglary: 8.257 incidents in 2013
- Mugging: 2.358 incidents in 2013
- Robbery: 276 incidents in 2013
- One of the tactics the Amsterdam Police uses is to intelligently allocate manpower where and when it matters most, using data mining methods.

Police Datamining in Amsterdam

- The Amsterdam Police Department has invested in datamining for over 12 years.
- 2 dataminers in service
- Availability of data mining software
- Availability of dedicated server
- Team datamining works on:
- Predictive policing
- Extraction of useful information from texts in police reports (domestic violence, discrimination, human trafficking, identification of potentially dangerous "einzelgangers")
- Uncovering criminal networks
- Sporadic issues involving large amounts of data
- Planning of manpower used to take place using "gut feeling" and ad hoc analyses.
- Police analysts were capable of making "hot spot" maps: plots of incident locations modified by applying a Gaussian filter

- A grid divides the Amsterdam map into 125m by 125 m squares.
- There will be more events in some squares than in others.
- Determine characteristics of the squares from the database.
- Calculate the probability of an event in a square based on its characteristics.
- Knowing the locations, determine when (what day, what time) the risk on an event is greatest.
- First selection: exclude squares that are "empty" (pastures, open water, et cetera)
- This leaves 11.500 relevant squares of $196 \times 196=38.416$ possible ones.
- Collect data from the remaining squares for three years (reference moments every two weeks).
- Every square has 78 data points.

- Total dataset has $78 \times 11500=$ 897.000 data points.
- For each reference moment and square, a number of characteristics are computed:
- Location specific characteristics
- Crime history
- Which crimes took place within the two weeks following the reference moment.
- For prediction, it's important that only those characteristics are recorded that could have been known at the reference moment.

Reference
moment

- Static, location specific characteristics
- Information from the central bureau of statistics: demografics en socioeconomical characteristics
- Number and kind of companies (bars, coffeeshops, banks, etc)
- Distance to the closest known offender (mugger, robber, burglar etc)
- Mean distance to the 10 closest known offenders
- Distance to the nearest highway exit

- Crime history

- Number of burglaries, robberies etc in several different time periods (relative to reference moment)
- Last two weeks, two weeks before that etc
- Last four weeks, four weeks before that etc
- Last half year
- Same for the neighbouring squares
- Linear trend in square (number of crimes increasing, decreasing, stable?)
- Season

- To link the characteristics known at the reference moment to what happens afterwards, an artificial neural network was applied.
- Result: a model that can assign riskscores to squares based on current knowledge.

Simplified model

Burglary

No rule applied: all squares have the same probability of burglary in the next two weeks (1.4\%).

If the last burglary in the square was less than 3 months ago, this rises to 4.7\%

If additionally the mean distance to the 10 closest known burglars is less than 400 m , then this rises to 6.1%

If a burglary has taken place in the last four weeks, this becomes 7.2\%

Simplified model

Mugging

No rule applied: alls squares have the same probablility of a mugging in the next two weeks (0.8\%).

If a mugging has occurred in the square less than 8 months ago, this increases to 4.9\%

If in the last half year two or more violent incidents have taken place in the square, this rises to 8.4%

If there are many houses in the square, the probability increases to 10.2\%.

- High-risk times are determined after high-risk locations are identified
- Locations are geographically clustered using a Kohonen algorithm
- Weekday of incident is recorded
- Incident times are categorized to correspond to police shifts

$$
\begin{aligned}
& \text { 00:00-08:00 } \\
& +\quad \text { 16:00-16:00 } \\
& \hline
\end{aligned}
$$

- The characteristics above are used in a similar classification algorithm.

- Automated process

- Every two weeks, data is collected and prepared, models are built and map data is generated.
- No human work is required to do this.
- Users can access the maps by a HTML-landing page that starts up a script that opens the desired maps.
- Users can use CAS without needing technical knowledge.
- CAS is leading for the planning of the following units
- Flexteams (entire region)
- Teams of districts 4 and 3 (South and East)
- For the other units, CAS is considered in the planning, but not (yet) leading.

- Planning process (tactical analysts):

- When should deployment take place?
- Where should deployment take place?
- Gather information on high-risk locations
- What's happening?
- Who causes problems?
- Anything else that might be interesting.
- Production of briefing
- Shift commences
- Feedback after shift
- Widening of predictive scope; also predict:
- Pickpocketing
- Corporate burglary
- Car break-in
- Bicycle theft
- Re-evaluate temporal component
- Migrate to different mapping tool

Questions?

